

PROMATION ENGINEERING

Precision Actuation for Industry

Actuator Specifications	PDO		
Torque "lb/Nm	2300"Ibs/260Nm		
Supply Voltage	460 vac 3 ¢	120vac	230vac
Max Inrush Current	2.1A	11.0A	5.6A
Running Current	0.7 A	3.8A	2.1A
Motor	Split Phase Capacitor		
Runtime (90@ ${ }^{\circ} \mathrm{6OHz} / \mathrm{vdc}$)	14.0 Sec		
	17.0 Sec		
Runtime (spring)	12 sec		
Duty Cycle	50\%		
Motor Starts	300 per hour		
Weight	$297 \mathrm{lbs} / 135 \mathrm{~kg}$		
Mechanical Connections	ISO5211 F12 8pt 27mm		
Electrical Entry	(2) $3 / 4$ " NPT		
Electrical Terminations	12-16ga		
Environmental Rating	NEMA 4/4X		
Manual Override	297lbs / 135kg		
Control	On/Off	On/Off, P	portional
Actuator Case material	Aluminum Alloy, Powder coated		
Motor Protection	$230^{\circ} \mathrm{F} / 110^{\circ} \mathrm{C}$ Thermal F^{*} Class *Totally Enclosed Non-Ventilated Motors		
Ambient Temperature	$-22^{\circ} \mathrm{F}$ to $+149^{\circ} \mathrm{F}$		
Operating Range	$-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$		

This version has a manual override

ProMation Engineering SPRING RETURN electric actuators with the -T59 suffix are specifically designed for use in tunnel applications. They have been third party tested for use up to two hours at $250^{\circ} \mathrm{C}\left(482^{\circ} \mathrm{F}\right)$ with a thermal protection blanket and up to one hour at $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$. The actuator comes standard with two auxiliary switches (Form C) and internal low power heater.
The standard version has a thermal protection circuit that interrupts power to the motor when the internal wiring temperature reaches $125^{\circ} \mathrm{C}$. The motor resumes operation after the internal temperature drops below $115^{\circ} \mathrm{C}$.
The -MTC configuration uses a form C thermo-switch to monitor the temperature and will change state from normally closed at $125^{\circ} \mathrm{C}$ returning to normally closed when the motor temperature drops below $115^{\circ} \mathrm{C}$. The motor will not cease functioning at high temperatures. Catastrophic damage to the motor can then occur. Motors are not warranted in the -MTC configuration.
The -BTC configuration has a form C bypass circuit in parallel with the motor thermo-switch. When the bypass circuit is open, the motor thermal protection circuit is functional and interrupts power to the motor when the motor temperature reaches $125^{\circ} \mathrm{C}$. The motor resumes operation after the internal temperature drops below $115^{\circ} \mathrm{C}$. When the bypass circuit is closed, the motor thermal protection circuit is not functional and the motor will not cease functioning at high temperatures. Catastrophic damage to the motor can then occur. Motors are not warranted in the -BTC configuration.

Theory of Operation

While power is present, the actuator will respond to drive control signals depending on the model chosen.
A2 position (on/off) unit will drive untilitreaches the full end of travel setting opposite the spring return direction.
A Proportional control unit will follow an analog control signal for positioning and will HOLD until a modified control signal is received.

In each of these models a motor brake unit is utilized to HOLD the actuator in position until commanded to move OR a loss of supply voltage.
If power is lost or removed at any time, the brake is released and the mechanical spring mechanism returns the actuator to its normal (unloaded) position. Once the spring mechanism has been released, the actuator will not drive under power again until all criteria are met:
a) The unit has reached its fail stop (unloaded) position,
b) Power has been restored to the actuator.
c) Initial Power Startup time delay has elapsed

[^0]
PDO Series Dimensional Data

Drive Coupling Fabrication Data

(4) M12×1.75

Application Notes:

1. These actuators are designed to be used between a horizontal or upright position. Do NOT mount the actuator with the top below a horizontal position.
2. When installing conduit, use proper techniques for entry into the actuator. Use drip loops to prevent conduit condensate from entering the actuator.
3. Both NPT conduit ports MUST use proper equipment to protect the NEMA 4 X integrity of the housing.
4. The internal heater is to be used in ALL applications.
5. Do NOT install or store the actuator outdoors or in humid environments unless it is powered up and the heater is functioning.
6. Use proper wire size to prevent actuator failure (see chart below for proper wire sizing).
7. Mechanical travel stops are factory calibrated for 90 degree operation. These stops are NOT designed to adjust mechanical rotation by more than $+/-3$ degrees.

Spring Pack Notes:

A modular cast aluminum housing incorporates the mechanical drive train, the spring pack and rack assemblies, the output drive shaft, motor and control section.

The spring pack is NOT field serviceable. Spring failure direction mode (CW or CCW) must be selected at time of order.

Standard Configuration and -T59

On/Off (2 Position) control is used for damper or valve applications where the requirement is for either fully open or fully closed positioning.
This actuator must drive to its end of travel opposite the spring fail position to stop motor. Loss of control signal or power before reaching its end of travel will cause the unit to spring return.

FOR ALL VERSIONS

- Field Control Device may be relay contact, Switch or Triac type.
- Pilot device 10A MAX.
- Auxiliary switches are rated 10A @ 250vac MAX.
- Terminals A-F are dry type Form C.
- Terminals accept 12-16ga solid/stranded wire.
- Line supply voltage is to be $\pm 10 \%$ of stated actuator voltage between line terminals $\mathrm{H} / \mathrm{N}(120 \mathrm{~V})$ or L1/L2 (230V)

-MTC Configuration

Terminals 6 and 5 are dry type Form C contacts that monitor the motor temperature. The motor thermo-switch is normally closed and will change state to open at $125^{\circ} \mathrm{C}$. The contact returns to closed when the motor temperature drops below $115^{\circ} \mathrm{C}$. The motor will not cease functioning at high temperatures. Catastrophic damage to the motor can then occur.

Motors are not warranted in the -MTC configuration.

-BTC Configuration

Terminals 6 and 5 are dry type Form C contacts that are in parallel with the motor thermo-switch. When the bypass circuit is open, the motor thermal protection circuit is functional and interrupts power to the motor when the motor temperature reaches $125^{\circ} \mathrm{C}$. The motor resumes operation after the internal temperature drops below $115^{\circ} \mathrm{C}$. When the bypass circuit is closed, the motor thermal protection circuit is not functional and the motor will not cease functioning at high temperatures. Catastrophic damage to the motor can then occur.

Motors are not warranted in the -BTC configuration.

Wire Sizing Chart

	MAX distance between Actuator and Supply (feet)		
Actuator/ Voltage	PDO 24VAC	PDO 120VAC	PDO 230VAC
Wire Amps Gage	19.0A	11.0A	5.6A
16	-	-	444
14	-	191	718
12	34	292	1098
10	57	496	1867
8	86	740	2786

Wire sizing data is provided to assist in the selection of the proper wire size for ProMation Spring Return actuators using various wire sizes over distance as a function of wire guage and distance.
Motor thermal circuits do not impact wire sizing
Product Ordering Example:

Relay to Operate
To
Terminal 3

An optional relay can be added to operate the actuator using a control voltage different from the line voltage.

Terminal 3 is not used for field control. Completing the circuit at A and B controls actuator

[^0]: Application requirements will dictate whether to utilize a CW (clockwise spring return) or CCW (counter-clockwise spring return) model.
 Spring return direction is NOT changeable and actuator must be configured for spring return direction at time of order.

 * Duty cycle is saffected by ambient temperature, supply voltage and control signal stability

